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Abstract 
Military operations in urban environments, such as logistical resupply and transport are 
becoming some of the most dangerous operations that he military has to perform.  The Defense 
Advanced Projects Agency (DARPA) is sponsoring the Urban Challenge Race in order to 
accelerate the development of autonomous unmanned ground vehicles to carry out dangerous 
operations in urban environments.  PercepTek has developed an autonomous ground vehicle 
based on a commercially available sport utility vehicle, commercial of the shelf sensors and 
custom autonomous navigation software.  The following describes PercepTek’s team, UGV 
hardware design and autonomous navigation software design. 
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1 Team Description 
PercepTek’s Team Urbanator is made up of individuals that are passionate about robotics.  The 
members of our team have significant robotic experience that included the DARPA Grand 
Challenge 2 [1] and many other government sponsored robotics programs.  The team skill set is 
well balanced and includes experts in robotic hardware, electronics, navigation systems, robot 
perception, and robot architectures. 

2 Vehicle Description 
2.1 Base Platform 
The base platform for this effort is a white 2007 5.3L V8 Chevy Tahoe named Rocky as shown 
in Figure 1.  An SUV platform was preferred over other vehicle types due to the extensive space 
to install equipment in a protected and air conditioned environment.  The height of the SUV was 
also appealing because it allowed for mounting the perception sensors from a high view point 
which allowed for a greater grazing angle with the roadway.  Our system architecture does not 
require an SUV platform, but it minimized issues related to packaging, power and thermal 
conditioning for this effort.  Our system can easily be adapted to any standard vehicle platform. 

 

 
Figure 1: Team Urbanator 2007 Chevy Tahoe Platform called Rocky. 
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2.2 Actuation 
The Chevy Tahoe was modified to provide actuation of steering, throttle, brake, parking brake, 
transmission and turn signals.  Rather than design our own actuation package, our team chose to 
purchase the AEVIT® X-wire Primary RPV Control System.  This system consists of the actuation 
and control for steering, throttle, brake, transmission, and ignition.  This same control system is 
being used on many other DARPA Grand Challenge vehicles.  The decision to purchase an 
actuation system rather than design a custom solution was based on cost, schedule and reliability 
issues.  Our integration of the AEVIT® X-wire system allows for easy operational mode change 
between autonomous and manual control of the vehicle.   

The AEVIT® X-Wire RPV Control 
System shown in Figure 2 consists of 5 
primary subcomponents that include 
the main CPU, the DC servomotors for 
moving the brake, throttle, 
transmission and parking brake, the 
Primary and Secondary Displays and 
the EC Panel which acts as a driver 
interface through the AEVIT system.  
This special RPV version of the 
AEVIT® technology was developed 
specifically for autonomous vehicle 
applications in rugged "off-road" 
conditions. 
 

2.3 Power System 
Rocky’s power system is 
composed of two distinct systems: 
the vehicle power system and the 
electronics power system.  Figure 3 
provides a block diagram of the 
power systems. 
 
The vehicle power system provides 
power to OEM vehicle 
components, as well as the 
AEVIT® drive-by-wire system.  
This system primarily consists of 
the original OEM alternator and 
vehicle battery.  In addition, a 
battery charger has been added to 
this system to permit operations 
while using shore power (120 
VAC) for highbay development 

and testing of the vehicle.  It should be noted that the AEVIT® system includes an isolated 
battery backup to facilitate safe operations in the event of a failure of the vehicle power system. 

 
Figure 2: Primary AEVIT X-Wire System.
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Figure 3: Rocky’s vehicle and electronics power system. 
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The electronics power system provides power to all components added to the stock vehicle, other 
than the AEVIT® drive-by-wire system.  These loads include all of the computing and sensing 
hardware added to the vehicle.  As this power system is separate and distinct from the vehicle 
power system, the vehicle is easily returned to a configuration of a stock vehicle, augmented by 
the AEVIT® system, simply by disabling the electronics power system.  The electronics power 
system is composed of a number of components, including an AuraSystems G8500XM 8.5kW 
AuraGen ICS system, an electronic idle control module, a set of 12V batteries, a 24VDC to 
12VDC battery equalizer and 120VAC to 24VDC shore power source. 
 
The AuraGen system consists of an under-hood generator driven by the vehicle engine, an 
electronics control unit (ECU), and a control panel.  The Auragen ECU converts the 
unconditioned AC power from the generator into 24VDC which is used for battery charging and 
driving an internal 24VDC to 120VAC inverter.  The 24VDC load/charging bus is bidirectional 
in that when a disruption of generator power occurs (e.g., UGV engine failure) 120VAC and 
24VDC load power is not lost as the system will seamlessly fault over to the 24VDC battery 
array.  Seamless transfer between generator (engine) and shore power operation is similarly 
handled by having the 24VDC shore power attached to the 24VDC load/charging bus. 
 
The AuraGen generator must spin at a minimum rate to both provide power to the nominal 
system load to avoid discharge of the electronics batteries, as well as to provide cooling.  With 
the nominal idle speed of the engine, and the ratio implemented in the pulley system for spinning 
the generator, the generator does not spin fast enough at idle to meet the minimum generator 
speed.  Therefore, an electronic idle control module is utilized to increase engine idle speed.  
This module interfaces between the OEM drive-by-wire throttle pedal and the engine computer.  
With a software controlled enable signal, the module increases engine speed to meet the 
minimum speed required for the generator.  Rocky’s control computer enables this module when 
the vehicle is in park, and when traveling at low speeds.   
 
For shore power operations, with the engine off, two battery shore power chargers provide up to 
40A each at +24VDC, from 120 VAC shore power.  In the shore power configuration, the 
chargers provide sufficient power to charge the electronics batteries, as well as provide sufficient 
power to maintain operation of the 24VDC and 120VAC Navigation Power System loads and 
charge the back up batteries. 
 
To provide +12 VDC and +24 VDC power buses, two AC to DC power converters are utilized.  
The use of power converters, as opposed to tapping directly from the electronics batteries, 
provides filtered, well-regulated DC supplies to system components, and additionally provides 
graceful degradation of functionality when the electronics batteries are not otherwise sufficiently 
charged. 

2.4 Safety System 
Our safety system has two modes of operation: manned and unmanned.  In the manned mode of 
operation, a safety driver sits in the driver’s seat and overtakes the autonomous system when 
necessary.  In the unmanned mode of operation, a remote emergency stop system has been 
installed that when activated will cause maximum deceleration of the vehicle and kill the engine.  
In this section we discuss each of these safety modes of operation. 
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2.4.1 Safety for Manned Mode Operations 
Most of our testing takes place in the manned mode of operation.  In this mode of operation a 
trained human safety operator is sitting in the driver’s seat of the robotic vehicle.  The safety 
operator can either manually control the vehicle through the normal vehicle interface (steering 
wheel, brake, and throttle) or put it in autonomous mode with the flip of a switch.   
 

The main responsibility of the safety 
operator is to ensure the robotic platform 
causes no harm to humans, property or the 
vehicle itself.  This is our team’s preferred 
mode of operation especially during 
integration and testing of new autonomous 
functions where unexpected results may 
occur.  Our team has used this safety 
approach successfully across many ground 
robotics programs with no safety issues.  
The safety operator has two means to 
regain control of the vehicle while in 
autonomous operation.  Figure 4 shows the 
driver access to the various mechanisms 
for overtaking computer control in 
autonomous operation.  The simplest and 
most natural mechanism for overtaking the 
vehicle is to overpower the offending 

control degree of freedom.  In other words, fight the actuation for the steering, brake and throttle.  
In all degrees of control, the low-level controller will attempt to overcome the resistance on 
achieving its goal and compensate by applying more power to the impeded or opposing actuator.  
In the case of overriding the brake or throttle actuator, the controller will respond with more 
throttle or brake, respectively.  Therefore, this approach is considered a “first response” to a 
hazardous situation and must be followed by additional steps in order to disable the actuation 
system.   
 
Unlike the first method of overtaking the autonomy, the second mechanism does not require any 
additional disabling to regain control of the vehicle.  This second method of overtaking the 
autonomy involves disabling the autonomy through various interfaces in the vehicle.  This 
disabling can occur through the toggling of either of two toggle switches mounted on the steering 
wheel for “finger tip” control or through the depression of one of two red mushroom buttons 
mounted on the dash of the vehicle.  One mushroom button is mounted near the driver and the 
second is mounted near the passenger seat.  Once either of these disabling pathways is activated, 
control of the vehicle atuators is returned to the safety driver who must safe the vehicle (i.e., 
correct trajectory and velocity to meet current situational need). 

2.4.2 Safety for Unmanned Operations 

Figure 4: Manned Safety Overtake Mechanisms
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The unmanned mode of operation is only used after extensive testing of the robotic system and it 
has proven to be reliable.  This mode of operation was used for the filming of the video for the 
DARPA Urban Challenge video submission and is intended to be used for the NQE and the 
Urban Challenge race event.  Our team also runs in this mode on a weekly basis with a safety 
operator in the driver’s seat to validate that the remote emergency system is functioning properly 
and to keep the remote safety operators trained.  Our remote emergency stop system is the 
Omnitech Two-way Safety Radio for Unmanned Ground Vehicle Operations (Omnitech-SR), 
shown in Figure 5, which is the same emergency stop system used for the previous Grand 
Challenge races.  The Omnitech-SR consists of the Safety Receiver, which is integrated with the 
unmanned vehicle, and the Transmitter which is operated by a human safety monitor in a remote 
position relative to the robotic platform.  The Omnitech-SR has two modes of remote 
intervention: Pause/Run and Enable/Disable.  On the activation of a Pause, the robotic platform 
comes to a controlled stop and the actuation system is disabled until a Run command is issued.  
When a Disable is issued, the vehicle comes to an abrupt stop, the parking brake is engaged, the 
power is cut to the actuation system and the vehicle engine is killed.   

2.5 Environmental  
All of the vehicle electronics are mounted in the rear cargo area of the Chevy Tahoe leaving the 
middle row of seats intact. 

2.5.1 Shock Isolation 
The rack enclosures are supported on each corner using Lord Heavy Duty Platform shock isolation 
steel cup mounts.  The selection of the mounts was based on analysis of the weight of the rack and 
components under urban driving conditions.   

2.5.2 Thermal, Dust and Moisture 
One of the reasons our team chose an SUV as our base platform was that all environmentally 
sensitive hardware could be mounted in the vehicle, thus significantly reducing issues with dust, 
moisture and thermal conditioning.  Through analysis, we determined that the stock air conditioner 
on the 2007 Chevy Tahoe could handle the thermal load of all the electronic hardware that was to 
be installed in the vehicle.  Some modifications were made to the ducting in order to vent cool air 
directly into the enclosures containing the electronics.   

 
Figure 5: Omnitech-SR remote emergency stop system integrated into the Rocky 

safety system. 
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2.6 Processing Architecture 

2.6.1 High Level 
The high level processing cluster is composed of 8 dual core 2.2 GHz Opteron 848HE processors 
in a single server enclosure.  The system uses a Tyran Thunder S4882 Quad Opteron 
motherboard with daughter card.  Four of the processors are on the main board and four are on 
the daughter card.  All processors share 16 GB of RAM.  The system also has two 500GB SATA 
hard drives for storage.  This configuration and processor set was selected for both processing 
horsepower, low power usage, ease of use and operation under a standard Linux distribution.  
The high level processing cluster is built around the SUSE 10.1 Linux distribution running a 64-
bit 2.6 kernel.   
 
All processing in the cluster was designed and implemented using C and C++ in Linux.  The 
processes responsible for sensor and navigation processing as well as the high level path 
planning are dynamically and automatically allocated across the processing cluster by the Linux 
symmetric multiprocessing configuration.  The inter-process communication is handled using the 
Neutral Message Language (NML) developed at the National Institute for Standards and 
Technology.  This approach provides a common memory-mapped interface both within each and 
across all of the processors in the cluster.  The high level processing architecture is separate from 
the low-level control processing and the interface between the two is over a Gigabit ethernet 
network using a DLink Gigabit switch. 

2.6.2 Low Level 
The low-level processing is the bridge between the high level behaviors and the vehicle hardware 
and is also responsible for managing the vehicle safety system.  When the high-level architecture 
desires a specific steering command, it sends a command packet over the ethernet to the low-
level controller for execution.  The low-level controller has analog outputs to control the steering 
and brake/throttle actuators.  The low level controller uses an RS232 serial bus to command the 
transmission and accessories (e.g., turn signals, head lights, etc.).  The low-level processor is a 
VersaLogic Cobra embedded EBX board with a 1.6 GHz Pentium-M processor, 512Mbytes of 
RAM and an 80Gbyte hard drive for data storage.  The processor operating system on the low-
level processor is SUSE 10.1 Linux in a 32 bit configuration. 

2.7 Localization 
Navigational position and orientation sensing is provided by an Applanix POS LV 220, a 
commercial off-the-shelf tightly coupled inertial and GPS navigation system.  The Applanix 
system consists of several L1, L1/L2 and differerential GPS receivers, an inertial measurement 
unit (IMU), and an interface to the OEM Speed sensor for odometry purposes.  Figure 6 
illustrates the different components of the POS LV system and the flow of POS data within our 
navigation system. 
 
With the use of OmniStar VBS DGPS service, Table 1, below, provides accuracy specifications 
of the POS LV 220 system both during nominal operations, and through successively longer 
GPS outage durations. 
 
The vehicle control computer is responsible for interfacing with vehicle navigation sensing, and 
providing the navigation solution to other consumers in the system.  To accomplish this task,  
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Figure 6: Rocky’s Navigation System. 
several software components are utilized.  A software module is responsible for interfacing with 
the Applanix via TCP/IP sockets on a dedicated 100 Mbit Ethernet network.  This software 
module is responsible for issuing control and configuration messages to the POSLV, and more 
importantly, parsing the navigation data stream from the POS LV and providing formatted data 
to other consumers in the system.  The software module also provides a data collection capability 
that is always running, and can be saved off to disk when desired in order to capture significant 
events. 
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X, Y 
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1.0 1.13 1.25 1.5 1.75 

Z Vertical 
Position 
RMS 
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1.5 1.63 1.75 2.0 2.2 

Roll and 
Pitch RMS 
Accuracy 
(deg) 

0.07 0.07 0.07 0.07 0.07 

Heading 
RMS 
Accuracy 
(deg) 

0.07 0.07 0.07 0.07 0.08 

Table 1: POS LV 220 Accuracies during nominal periods, and through GPS outages 
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A dedicated software application has been developed for the Rocky vehicle for display of 
navigation data, as well as to provide diagnostic, analytic and calibration functions.  This 
software application executes on a developer’s computer, either from a live data stream provided 
by the socket relay function of the Applanix interface software module, or from stored data 
collections.  This application provides a real-time display of navigation data, including the 

essential navigation solution, and 
other ancillary data, such as status 
of the POS LV and GPS satellites 
tracked.  This application also 
provides analytic functions, such as 
GPS outage times, maximum error 
and so forth.  Finally, this 
application also provides 
calibration functionality, such as 
correction of IMU mounting 
angles, and visualization of 
calibration parameters.  Below, 
Figure 7 shows a sample 
screenshot of execution of this 
application.  

2.8 Hardware Configuration 
Figure 8 shows the interconnectivity of all of the hardware components on the Rocky vehicle 
except for the power system. 

 
Figure 7:  Navigation display, diagnostics, analysis, 

and calibration application 

 
Figure 8: Hardware Configuration 
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3 Sensing 
3.1 Analysis Approach 
In order to generate the requirements for the sensor system, we analyzed the sensing 
requirements for each of the individual low-level robotic behaviors.  The analysis was performed 
for maximum and minimum sensor range and horizontal and vertical fields-of-view for each 
sensor type.  Much of the sensor analysis is based on techniques outlined in a paper by Alonzo 
Kelly of Carnegie-Mellon University [2].  In order to determine the requirements of a particular 
sensor, we used the most stringent requirement for each type of analysis across the set of 
behaviors which use the sensor.  We used five forms of analysis to define requirements for the 
urban environment.  Some of the analyses build on each other and some of the analyses are very 
specific to a particular environmental situation.  Figures 9-13 show the five types of analyses 
used to define sensing requirements.   

 

Figure 9 shows the Pure Stopping Maneuver analysis.  This analysis is used to determine 
required sensing range and is based on the premise that a sensor must be able to see out further 
than the minimum distance it takes the vehicle to stop at full braking which is considered the 
most elementary means of collision avoidance.  This idea becomes clearer if the inverse logic is 
considered where the sensor cannot see beyond the stopping distance of the vehicle.  If a hazard 
is detected at the fringe of the detection range and the vehicle responds with full braking, it will 
collide with the hazard, where if the detection was made further than the stopping distance, the 
vehicle would stop before contact was made.  This analysis uses standard kinematics equations 
to determine the stopping distance of the vehicle.  For the pure stopping maneuver a worst case 
analysis was performed using the DARPA specified maximum mission speed of 30mph.  Other 
term values were 0.1 seconds for actuation time, 0.1 seconds for algorithm cycle time, 0.03 
seconds for data acquisition time or the frame rate of a standard camera, a coefficient of friction 
of 0.8 and a safety buffer zone of 2 meters.  We also assumed a 0% grade of the terrain.  This 
analysis was used to determining the range of our obstacle avoidance trajectory planning system 
and our road and lane tracking algorithms.   

 
Figure 10a shows the Horizontal Field-of-View analysis.  The idea here is that the sensor 
coverage must cover the full area in which the vehicle can travel in a Pure Stopping Maneuver, 
i.e., the vehicle is full braking while at the same time, steering away from the hazard.  With the 
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added steering maneuver the analysis gets more complex because at higher speeds while turning, 
two forms of instability can be induced: 1) the vehicle rolling or 2) the vehicle sliding sideways.  
This analysis takes into account the roll/slip instability and restricts the horizontal field-of-view 
of the sensor to deal only within the stability limits of the vehicle.  Figure 10b shows a plot of the 
horizontal field-of-view requirement versus speed.  At the lower speed ranges as the speed 
increases, the horizontal field-of-vehicle requirement also increases.  However, above 17 mph, 
the vehicle cannot make hard turns due to the roll/slip instability, so the horizontal field-of-view 
requirement begins to drop at these higher speeds.  For our requirements, we used the most 
stringent requirement or the peak of the field-of-view curve in Figure 10b.   

Where the previous two analyses were based on emergency maneuvers of the vehicle to avoid a 
collision, the intersection analysis in Figure 11 is based on being able to see all vehicles in the 
crossing lanes of traffic that could interfere with a safe crossing of the intersection.  The analysis 
assumes that the host vehicle is stopped before the intersection and the cross traffic is moving at 
the maximum allowable speed of 30mph.  Other assumptions for this analysis are listed in Table 
2.  The first step in determining if it is safe for the host vehicle to cross the intersection is to 
determine how long it will take the host vehicle to cross the intersection with a margin of safety 
of 2 seconds.  Our assumption is that the intersection is two lane widths wide and the host 
vehicle starts from a stopped position and has an acceleration of 0.25 g’s.  The intersection 
crossing time is multiplied by the speed of the cross traffic to get the distance traveled by the 
cross traffic in the time it takes for the host to pass through the intersection.  This distance then 

 
Figure 10: Horizontal Field-of-View Analysis:  (a) The sensor system must cover the full envelope 

where the vehicle could drive to a distance of the full braking stopping distance; (b) 
horizontal field-of-view versus vehicle speed. 
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Assumptions Value 
Host Vehicle Is Stopped N/A 
Perpendicular Intersections N/A 
Cross Traffic Speed 30 mph 
Time Margin 2 seconds 
Intersection Width 2 lane width wide (~7meters) 
Acceleration of Host 0.25g’s 
Intersection is Orthogonal  

Table 2: Intersection Analysis Assumptions
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becomes the detection range for the sensor used for detecting cross traffic.  A conservative 
analysis for the required field of view would assume that the host needs to see infinitely far to 
both the right and left of the intersection leading to a field-of-view requirement of 180 degrees 
for an orthogonal intersection.   

 
Two other forms of analysis: Merge/Lane Change and 
Hard Turn Analyses shown in Figures 12 and 13, 
respectively.  These, like the intersection analysis are 
very specific to the urban environment.  The results of 
all five analyses with respect to the relevant behaviors 
are shown in Table 3.   
 
The resulting sensor configuration for our Urban 
Grand Challenge vehicle is shown in Figure 14 where 
each sensor meets the sensing requirements across the 
set of relevant behaviors to which it is assigned.  The 
forward looking cameras will be used for lane 
tracking and making a left turn.  The front looking 
radars as well as the front looking SICK laser will be 
used for forward obstacle detection.  The front 
looking radars will also be used for safe gap 
maintenance between the host vehicle and any vehicle 
in-front of the host vehicle.  The downward looking 
SICK will be used for the hard right turn around a 
corner with a curb.  The side looking SICKs will be 
used for lane changing and merging.  The side 
looking radars and front looking SICK will be used to 
determine intersection clearance for crossing. 

 
Figure 12: Merge/Lane Change 
Analysis:  The detection range for 
sensing vehicles in the adjacent lane 
must be greater than the stopping 
distance of the vehicle in the adjacent 
lane. 

 
Figure 11: Intersection Analysis:  Host vehicle must be across 

intersection from a stopped position before the 
crossing vehicle arrives at the intersection.  
Therefore, the host vehicle must see out further than 
the cross traffic can travel in the time it takes the 
host to cross the intersection with some safety 
margin. 
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The backup SICK will be 
used for detecting hazards 
behind the vehicle when 
backing out of a parking 
spot or the reverse portions 
of a three point turn.  The 
summary of sensor ranges 
and fields of view are 
shown on Table 3 along 
with the behavior the 
sensor supports and the 
analysis types used to drive 
its geometry requirements. 

3.2 Sensor Specifics 
SICK LMS Line Scan LIDAR 
A combination of SICK LMS line scan lidar units like the 
one shown in Figure 15 are used for close range terrain 
sensing on the Rocky vehicle.  The LMS 290-S14 (90 deg 
at 0.5 deg/sample with 75Hz scan rate) mounted on the 
front sensor rack looking downward is used for curb 
detection and determining drivable surfaces.  A LMS 211-
30106 (180 deg at 1 deg/sample with 75Hz line scan rate) 
mounted on the front sensor rack looking forward is used 
for obstacle detection.  The same SICK is mounted on both 
sides of the vehicle for lane change maneuvers.   

 
Figure 13: 90o right turn analysis 
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behavior Sensor Type hfov (deg) vfov (deg) 
maximum 
range (m) analysis type 

Lane Tracking camera 58 15 17 hfov analysis, stop 
distance analysis 

Paved/Unpaved Roads camera 58 15 17 hfov analysis, stop 
distance analysis 

Safe Gap Maintenance radar, camera 58 15 17 hfov analysis, stop 
distance analysis 

Lane Change side looking laser 180 NA 17 merge/lane change 
analysis 

Merge side looking laser 180 NA 17 merge/lane change 
analysis 

Intersection Crossing side looking radars, front 
looking laser 

15 (radars), 
180 laser, 100 

camera 
NA 120 (radar), 15 

(laser) intersection analysis 

90 degree Right Turn at 
Curb downward looking laser 90 NA 5m curb analysis 

Left Turn Across Traffic side looking radars, front 
looking laser 

15 (radars), 
180 laser NA 120 (radar), 15 

(laser) intersection analysis 

Obstacle Avoidance laser, radar 58 NA 17 hfov analysis, stop 
distance analysis 

Pullin Parking Spot  laser 180 NA 3m hfov analysis, stop 
distance analysis 

Pullout Parking Spot  backup aid radar 180 NA 5m hfov analysis, stop 
distance analysis 

U-turn (5 mph) laser 23 NA 3m hfov analysis, stop 
distance analysis 

Intersection Queing  laser 23 NA 3m hfov analysis, stop 
distance analysis 

Table 3: Limiting Sensor Configuration

 
Figure 15: SICK Laser Scanner 
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Delphi ACC3 Radar 
The Rocky vehicle is equipped with five production Delphi Forewarn® Smart Cruise Control 
radars (ACC-3) like the one shown in Figure 16.  These radars were designed for adaptive cruise 
control and automated safety controls in passenger 
automobiles.  Smart Cruise Control radars use a 
mechanically-scanning, 76 GHz FMCW, long range radar 
sensor to detect objects in the vehicle’s path up to 500 
feet (152 meters) ahead.  The ACC radars have a 15 
degree field of view.  For the Rocky vehicle, three ACC 
radars are configured across the front of the vehicle in a 
manner to provide a 45 degree field of view.  This 
configuration is critical in order to detect potential 
obstacles in the opposing lane before attempting a lane 
change maneuver.  An ACC radar is mounted on each side of the vehicle angled to detect cross 
traffic out to greater than 100 meters at an intersection.  Data from the five radars is transmitted 
via a CAN interface to a Radar Interface Microcontroller which converts the CAN signal to 
Ethernet where the data is then read by the main navigation computing cluster and is made 
available for behavior analysis.   
Sony FireWire Camera 
All of the cameras on Rocky are Sony DFW500VL color firewire cameras.  The cameras have 
auto-exposure, auto-gain and auto-iris.  This improves the cameras ability in diverse lighting 
conditions.  The camera produces imagery in multiple formats and frame sizes.  For this 
application all of the cameras are set to provide 320x240 color imagery at frame rate. 

 
Figure 14: Sensor Configuration based on sensor analysis. 

 
Figure 16: Delphi ACC3 Radar 
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4 Control/Software Architecture 
4.1 Architecture Components 
The software architecture is shown in Figure 17. The key responsibilities of the software 
architecture are: 1) reading the desired mission file, 2) planning a route to achieve all of the 
mission checkpoints, 3) combining behaviors and sequencing these combinations in an optimal 
way to achieve the mission, 4) providing data access for all components of the system, and 5) 
coordinating an appropriate response to dynamic changes in the environment.  Our Urban Grand 
Challenge software architecture grew out of the architectural approach we used for our Grand 
Challenge 2 system, which made extensive use of environmental contexts.  In our system, an 
environmental context encapsulates a particular environmental scenario to which we assign 
sensors, algorithms and parameter settings which are best suited for the context.  In a Grand 
Challenge 2 mission, we would dynamically switch between contexts, thus activating and 
deactivating algorithms and sensor streams to best handle the current context.  In studying the 
Urban Grand Challenge problem, we determined that the use of environmental contexts could be 
extended in order to achieve the complex missions characterized by the DARPA Urban 
Challenge.   
 

 
Figure 17: Team Urbanator Urban Challenge Software Architecture.
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The main components of the architecture, as shown in Figure 17, are the robotic behaviors that 
are part of behavior sets associated with specific environmental contexts.  A single behavior can 
be part of multiple environmental contexts and multiple instances of a particular behavior type 
may exist with each tied to a different sensor input.  For instance, we may have an obstacle 
avoidance algorithm coupled with a radar, and a different instance of the same obstacle 
avoidance algorithm taking in data from a laser.  The outputs from the current active set of 
behaviors are presented to an arbiter called COMA (Contextual Operating Mode Arbiter) that 
combines the outputs of the set of behaviors into a single resultant control response for speed and 
steering.  The current environmental context is maintained by the context stack manager.  The 
stack internal to the stack manager is a set of ordered contexts that were pre-planned based on 
the desired set of mission checkpoints.  The stack data structure is used so that the architecture 
can deal with dynamic environmental events by pushing new contexts onto the top of the stack.  
For instance, if a slow moving vehicle is encountered in the host vehicle’s lane of traffic a “pass-
vehicle” context is pushed to the top of the stack.  After the completion of the pass, the pass-
vehicle context is popped off and the old context is resumed.   
 
In order to deal with blocked routes and replanning, the context stack manager updates a globally 
accessible set of buffers.  The first buffer contains the current segment identification number and 
status of progress on that segment.  On a blocked route where a replan operation must be 
invoked, the planner will know what segment caused the failure and will not incorporate that 
segment into the new plan.  The second buffer maintains a status of the mission checkpoints and 
whether they have been achieved or not.  The planner uses this information to prevent the 
generation of a new plan that attempts to achieve checkpoints that have already been achieved 
through the execution of the previous plan.  In the following sections we describe our planning 
approach.   

4.1.1 Planning 
Our planning system shown in Figure 18 consists of two stages.  The first stage called the Road 
Network Planner uses a constraint based planner to generate a path from a start node to a goal 
node through the directed graph.  The second stage of the planning called the Context Stack 

 
Figure 18:  The High Level Planning approach consists of two 

stages.  The first stage produces the optimal path 
through the directed graph and the second stage 
produces a context stack augmented canned behavioral 
sequences.
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Generator traverses the path through the graph producing the context stack that will be sent onto 
the context stack manager for execution.  In the process of constructing the context stack, the 
second stage planner inserts specific context sequences that have been formulated to handle very 
specific environmental situations such as stopping for a stop sign.  In the following sections we 
describe each stage of the planner in more detail.   

4.1.2 Road Network Graph Planner 
A directed connected graph is constructed by the Road Network Data File Parser (RNDF Parser) 
from the Road Network Data File provided by DARPA.  The nodes in the graph correspond to 
waypoints in the RNDF and the directed edges between nodes are established by applying a 
simple set of rules based on keywords and format of the RNDF.  For example, a sequence of 
waypoints making up a lane in the RNDF are sequentially connected with directed edges in the 
order they are presented in the RNDF.  Keywords such as “exit” are also used to establish links 
between nodes.  Zones are incorporated into the connectivity graph with each parking spot being 
represented by two nodes that correspond to the two waypoints that make up a parking spot.  The 
parser also stores attributes of waypoints specified from the RNDF such as whether a waypoint 
corresponds to a stop sign, checkpoint, and/or parking spot.  In addition, the parser collects or 
infers attributes on edges based on whether the edge is an exit or entry into or out of a parking 
spot.  The exit edges can further be refined into whether the exit represents a left turn, right turn 
or straight connection between map entities.  A connected graph, based on a small portion of the 
sample RNDF provided by DARPA, is shown in Figure 19 along with node and edge attributes.  
The stage one planner uses the directed edge connectivity to generate a path from a start point to 
a goal point based on the A* constraint based planner.  In generating our optimal plan, we will be 
able to use any combination of a distance, time or route complexity constraints.  Since it will be 

 
Figure 19:  Connectivity Graph produced from the sample RNDF 
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necessary to achieve the set of checkpoints provided in the Mission Data File in the correct 
order, the Road Network Graph Planner produces sub-plans from the start location of the host 
vehicle to the first checkpoint, and between subsequent checkpoints.  The final plan provided to 
the Context Stack Generator is a concatenation of the set of sub-plans. 

4.1.3 Context Stack Generator 
The purpose of the Context Stack 
Generator is to convert the path 
through the directed graph produced 
by the stage one planner into a 
“robotic” plan that is of a form that 
can handle dynamic environmental 
events, and has been augmented with 
specialized context sequences 
designed to handle upcoming 
environmental situations known to 
occur along the route from the 
attributes obtained from the RNDF 
such as a stop sign or intersection.  
Figure 20 shows the augmentation of 
the context stack for a small portion 
of the path from the directed graph in 
Figure 19.  The augmented context 
stack contains canned context 
sequences designed to handle 
specific environmental situations 
such as stop signs, left turns, right turns and achieving checkpoints.  The individual 
environmental contexts that make up the context stack are in a form that can be executed by the 
rest of the architecture.  As each context is completed, which is indicated by one or more of the 
behaviors running in the context, the context gets popped off the context stack and the 
subsequent context becomes the current active context. 

4.1.4 Context Stack Manager 
The high level management of the plan execution is handled by the Context Stack Manager.  The 
Context Stack Manager has several responsibilities:  1) control the sequencing of contexts in the 
stack, 2) handling dynamic environmental events, and 3) forcing a replan if the current executing 
route is blocked.  The sequencing of contexts in the stack is handled in the following way.  The 
current active context that gets executed by the rest of the architecture is the context at the top of 
the stack.  On the completion of a context, which is indicated by the Context Complete event 
from one of the behaviors in the current context, the current context is popped off the stack and 
the next context on the stack becomes the active context.  The ability to handle dynamic 
environmental events is dealt with in two ways:  1) the context itself can handle the event such as 
avoiding a hazard, or 2) a specific dynamic event is detected requiring a specialized event 
resolution context sequence to preempt the current active context and handle the situation.  The 
preemption of the current active context is achieved by pushing the event resolution context 
sequence to the top of the context stack.  On completion of the resolution sequence, the system 

Figure 20: Generation of the context stack from the 
path through the connected graph 
representing the sample RNDF. 
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reverts back to the prior context before the dynamic event occurred.  An example of one of these 
specialized events is the requirement to pass a slow moving vehicle in the host vehicle lane.  A 
replan occurs when a specific behavior determines that it has no path.  This could be an obstacle 
avoidance algorithm seeing all candidate steering directions blocked by hazards.  The offending 
behavior signals the COMA arbiter that the path is blocked.  COMA then sets the No Path buffer 
to true which is in turn seen by the Context Stack Manager causing it to generate a replan signal 
to the planner. 

4.1.5 Context-Based Arbitration 
Our software architecture design is based on the premise that not all sensors and algorithms are 
optimal for all environmental situations.  For instance, an autonomous vision-based road-
follower will not work well in an off-road situation where there is no road.  It is even possible 
that if the algorithm is allowed to influence vehicle control in this situation, it can generate the 
incorrect response for the situation leading to navigation failure.  Our software architecture 
design philosophy is to be able to dynamically and optimally reconfigure the software 
architecture based on the current environmental situation.  At the heart of our context based 
approach is COMA (Contextual Operating Mode Arbiter).  COMA is responsible for monitoring 
the current environment context and dynamically reconfiguring the behavior sets based on 
changes in context.  The association of sensors to behaviors and behaviors to contexts is 
maintained in configuration files and can be easily modified.   
 
At the lowest level of COMA is the reactive layer of behaviors.  Behaviors are categorized into 
positive and negative behaviors.  A positive behavior is one that has a specific direction it desires 
to travel.  A road-follower is an example of a positive behavior because it is attempting to steer 
the vehicle to the center of a road.  A negative behavior is one that blocks candidate steering 
directions based on the hazard level of those candidates.  The obstacle avoider is an example of a 
negative behavior.  Based on the importance of the behaviors relative to the other behaviors in 
the context and the instantaneous confidences from the active behaviors in the context, COMA 
combines the steering and speed responses from these behaviors into a resultant speed and 
steering response that gets passed on to the controller for execution. If a behavior within the 
current context determines that there is no path, COMA performs several mitigation steps before 
passing the No_Path event up to the planner for a replan.  COMA was the basis of our 
architecture for the Grand Challenge 2 and we exploited the context-based philosophy 
extensively in our Urban Grand Challenge architecture.   

4.2 Behaviors 
The role of a behavior in a reactive robot control architecture is to generate a control response on 
a very specific input type.  If it is required that the system respond to additional input types, then 
additional behaviors are required in the system.  Therefore, it is typical that multiple behaviors 
are executing concurrently in a reactive system.  In this section we describe the behaviors used in 
the architecture. 

4.2.1 Waypoint Following 
The waypoint following behavior steers the vehicle along a sequence of waypoints attempting 
minimize the vehicle’s normal distance from the segments connecting the adjacent waypoints.  
The only sensing modality used by the waypoint follower is the navigation system.  
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4.2.2 Geo-Maneuvers 
These are navigation only behaviors and they include “Right-Turn”, Left-Turn”, Geo-Stop, and 
U/K turn.  For these precanned trajectories, the algorithm servos around the navigational position 
of the vehicle relative to the trajectory generating the appropriate steering command to minimize 
offset from the planned path. 

4.2.3 Obstacle Detection and Avoidance 
The function of this behavior is to detect and avoid hazards that occur along the desired route of 
the vehicle.  The algorithm uses a 2.5 dimensional map as shown in Figure 21 to represent the 
environment around the vehicle.  The map can be populated by any combination of radar, laser 
or camera data.  The map is vehicle centered which means as the vehicle moves, the objects in 
the map are translated relative to the vehicle.  The planning component of the map can function 
as either a positive or negative behavior.  In order to function as a positive behavior, the 
algorithm requires a desired route in the form of waypoints.  The plan generation is based on an 
A* constraint based trajectory planner that plans around hazards in the map and produces a 
trajectory that achieves the goal point from the desired route.  If the behavior is functioning as a 
negative behavior, it costs a set of candidate steering directions represented as steering radii.  As 
a negative behavior, the behavior determines where the system should NOT drive.  The 
algorithm can dynamically switch between a positive and negative behavior if there is no desired 
route to follow as a positive behavior.   

4.2.4 Safe Gap Maintenance 
This behavior maintains a safe gap distance between the host and a lead vehicle in the predicted 
path of the host by controlling the host vehicle’s speed and acceleration.  It detects if there is a 
lead vehicle in front of the host vehicle in the predicted path of the host using the front facing 45 
degree radar array mounted on the front of the vehicle.  The radar provides range and angle to a 
set of potential targets.  The algorithm determines which targets are relevant to its predicted path 
and how to respond to the target if it is relevant.  Safe gap maintenance is considered a positive 
speed behavior in the COMA arbiter. 

 
Figure 21: The Layers of the obstacle avoidance map correspond to relevant vehicle 

dimensions and capabilities. 
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4.2.5 Unstructured Road-
Following 
The purpose of this algorithm is to 
keep the vehicle a minimum 
distance from a road edge for 
unmarked roads (no lines).  This 
algorithm will detect contrast 
based road edges such as a 
boundary between a paved road 
and gravel shoulder in a color 
camera image.  The algorithm will 
make use of a set of visual and 
geometry cues to produce the best 
contrast edge.  The set of cues used cycle to cycle can change dynamically to optimize the 
contrast edge.  Once the contrast edge is determined, it is fit with a cubic spline and from this a 
drive-to point along the curve is computed for a lookahead distance that is based on vehicle 
speed.  In the Urbanator architecture, this algorithm acts as a negative behavior essentially 
pushing the vehicle away from the boundaries of the center of the driving lane.  Figure 22 shows 
the output from the output from this algorithm.  The left image shows the estimated road edges 
and the right image shows the classified road as a green overlay in the scene used to generate the 
road edges. 

4.2.6 Structured Lane-Tracking 

The purpose of this algorithm is to keep the vehicle laterally centered in a marked lane through 
straight-aways and curves.  The algorithm uses the imagery from a front-mounted camera, and 
extracts the road lines from the scene.  The algorithm then estimates the upcoming road 

  
Figure 22: The left image shows the original color 
image with the road boundary shown as connected 
yellow line segments.  The right image shows the 
classification of the road as green.  

 
Figure 23: Algorithmic stages for our structured lane-tracking algorithm. 
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Figure 24: Visual Stop line algorithm. 

 
Figure 25: Virtual Bumper Zones 

curvature and generates a steering command to maintain the vehicle’s lateral position in the lane.  
This algorithm will accurately steer the vehicle at speeds up to 70mph and at curvatures up to 
0.02 m-1 or 50 m radius turns but at slower speeds.  Figure 23 shows the algorithmic stages of 
our structured lane-tracking algorithm. 

4.2.7 Profile Following 
The profile follower uses a downward facing laser scanner mounted on the front of the vehicle to 
determine the position of the geometric edge of the road and generates steering arcs to steer the 
vehicle away from it from the edge.  This behavior is primarily used to push the vehicle away 
from curbs.   

4.2.8 Visual Stop Line 
This behavior controls the speed of the vehicle so 
that is stops the vehicle so the vehicle’s front 
bumper is directly over a physical stop line on the 
ground.  The algorithm uses camera imagery and 
bounds its search for the stop line to a subregion 
based on the location of the stop waypoint from the 
RNDF.  The stop line is detected using a profile 
over the summation of rows in the subregion.  The 
stop line location is determined by finding a peak 
in the profile over the rows and making sure the 
peak meets minimum thresholding requirements.  
Figure 24 shows the output of our visual stop line 

algorithm.  The bounded search region is indicated by the transparent blue trapezoid and the scan 
line profile is shown on the left side of the search region.  In this case the peak of the scan line 
profile directly coincides with the stop line on the ground.  The purple horizontal line indicates 
the algorithms estimate of the stop line in the scene. 

4.2.9 Virtual Bumpers 
Our architecture has multiple built-in layers of protection 
against collisions.  At the highest level is the obstacle 
avoidance algorithm.  At the lowest level are the virtual 
bumpers.  The virtual bumpers provide a protective 
boundary around the vehicle as shown in Figure 25, and 
act as a last layer of defense for an impeding collision.  
For front and rear breaches of the virtual bumper 
boundary, the vehicle is immediately stopped.  This 
capability is only active below host vehicle speeds of 
10mph.  In the side zones, the virtual bumper algorithm 
blocks the vehicle from steering in the direction of the 
zone breach.  The side zones are active at all speeds.   

4.3 Condition State Evaluators 
In order for the control architecture to make logical decisions based on the state of the urban 
environment, a set of condition evaluators have been implemented that provide the truth values 
for a wide range of conditions.  For instance, if the reasoning system is attempting to cross an 
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intersection, it needs to know if the intersection is clear before proceeding.  Unless the 
intersection is clear, the host vehicle’s progress will be blocked.  A typical set of condition 
evaluators used to determine intersection clearance are CLEAR_LEFT, CLEAR_RIGHT and 
CLEAR_FRONT as shown in Figure 26.  If all of these are satisfied, the vehicle is allowed to 
cross the intersection.  In this section we describe the condition evaluators in our system. 

4.3.1 Intersection Left/Right 
Clear 
These condition evaluators make use 
of the data coming from the side 
looking radars and cameras.  The 
radars in addition to providing target 
range and angle also provide a range 
rate for each potential target.  The 
cameras are used with image 
differencing in localized portions of 
the image.  By combining the radar 
information with the localized image 
differencing an accurate assessment 
of left and right clearance can be 
performed. 

4.3.2 Intersection Front Clear 
The front clear determines if the center portion of the intersection is clear.  This condition 
evaluator makes use of the front facing laser scanner and knowledge of the intersection geometry 
that is posted by the mission planner to determine if this region of the intersection is clear. 

4.3.3 Intersection Precedence 
This condition evaluator determines when it is the host vehicle’s turn to cross an intersection, if 
there is other traffic at the intersection.  This algorithm looks at both the laser and camera data 
for the different zones of the intersection.  The search zones for this algorithm are dynamically 
determined when the vehicle arrives at the intersection based on geometry deduced from the 
RNDF file and the current vehicle position relative to the intersection.  In order to separate 
vehicle detections from clutter, templates on the laser data and refinement is done using image 
processing on the projected laser hits in the camera image.  Figure 27 shows the situation where 
the host arrives at an intersection where another vehicle already was situated and waiting to cross 
the intersection.  The upper panel shows the other vehicle in the imagery from the left looking 
camera and a host vehicle centered map showing laser data relative to the host vehicle.  The 
detection in the map is indicated by red cells with a red bounding box.  The search zones are 
shown as blue rectangles.  The host vehicle’s progress is blocked and this is indicated by the 
solid red square in the lower left of the upper panel.  After the other vehicle clears the 
intersection, the algorithm determines it is the host’s turn to cross and this is indicated by the 
solid green square in the lower left of the lower panel.   

Figure 26: Intersection Clearance Zones. 
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Figure 28: Passing Zones for the Passing Condition 

Evaluators. 

4.3.4 Passing Condition evaluators 
These condition evaluators determine if 
the passing zones around the host 
vehicle are clear for a passing or lane 
change maneuver.  These passing zones 
are shown in Figure 28.  The appropriate 
set of passing zones considered in the 
decision to pass is based on the direction 
of the pass maneuver.  For instance a 
pass maneuver to the left lane requires 
clearance in the REAR_LEFT, LEFT 
and FRONT_LEFT zones.  The 
clearance of zones is determined using a 
combination of laser and radar data.   

5 System Testing 
Our team uses three forms of testing that includes a cluttered urban environment, a sparse urban 
environment and a well controlled regression test. 

5.1 Cluttered Urban Environment 
Our cluttered urban environment testing takes place in a small town called Louviers Colorado 
shown in Figure 29 with the RNDF overlay.  Louviers is particularly difficult for robot 
navigation due to the heavy tree cover that causes prolonged GPS outages and stark shadowing 
on the roadways which provide challenges for vision-based perception algorithms.  In addition, 
Louviers has narrow roads with lots of road side clutter which challenge all of the sensing 
modalities.  It is our belief that by overcoming the difficulties associated with Louviers, our 

 

 
Figure 27: The top panel show the scenes from three separate cameras with laser 
data projected into the scene with a two dimensional map showing the laser data 
relative to the host vehicle.  In the top row, since a vehicle has been detected in the 
left zone at the time the host arrived at the intersection, the algorithm determines 
that it is NOT the hosts turn to cross.  After the other vehicle crosses the 
intersection, the algorithm determines it is the host’s turn to cross the intersection 
which is shown in the lower panel. 
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system will be more reliable and robust in all urban environments.  We frequent this test site on a 
daily basis. 

5.2 Sparse Urban Environment 
Our second urban test site is Keenesburg, Colorado shown in Figure 30 with the RNDF overlay.  
Keenesburg is a much more benign environment with much less tree cover making both the 
navigation and perception problems easier.  This testing occurs on a weekly basis.  The 
Keenesburg testsite is also the location of our DARPA site visit. 
   

5.3 Regression Test 
The regression test is based on the ISO-3888-1 standard with modifications specific to robotic 
testing [3].  This ISO test was originally designed to evaluate human drivers.  We have setup this 
course in a large flat parking lot.  The purpose of this regression test is to make sure that new 
modifications to the system have not negatively impacted the low-level controllability of the 
robotic platform.  This test focuses mostly on low-level control, navigation and simple 
perception.  The course is intended to by run at progressively higher speeds starting at 5 mph up 
to 30 mph.  For each run a detailed account of performance is maintained.  
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Figure 30:  Keenesburg Colorado sparse 
urban environment testsite with RNDF 
overlay. 

 
Figure 29:  Louviers Colorado cluttered 
urban environment testsite with RNDF 
overlay. 


